Меню

Как сделать лазер прожигающий бумагу



Как сделать выжигающий лазер из dvd-rw привода

В этой статье покажу как сделать известную самоделку,под названием «Выжигающий лазер из dvd».С помощью такого лазера,можно зажигать на небольшом расстоянии спички,прожигать черную изоленту или на черной поверхности делать повреждения.Сконцентрированный луч лазера опасен для глаз,надо соблюдать технику безопасности и не светить им в глаза.

Основа устройства-лазерный диод,его можно взять из старого dvd-rw привода.О том,что в нем находится такой лазер,можно узнать по надписи на корпусе-CLASS 3B.Мощность такого лазера более 5мВт.

Сам лазер находится в каретке,прикреплен на капли клея,там-же находится фокусирующая линза,ее тоже надо извлечь.

В каретке находится еще один лазер,он похож на выжигающий лазер и он не нужен,хотя тоже излучает но в другом спектре.

Расположение и подключение выводов показано на фото.Питание 3.7В от аккумулятора через токоограничивающий резистор сопротивлением 3 Ом и мощностью 2 Вт.Резистор подключен по плюсу питания лазера.

Лазер потребляет ток около 280мА и он будет нагреваться,поэтому ему нужен теплоотвод.При пайке лазера,выводы не должны перегреваться а паяльник должен быть заземлен,иначе лазер выйдет из строя.

В темноте,лазер должен ярко освещать пространство красным светом.Этот рассеянный свет надо сконцентрировать в узкий пучок,только так можно выжигать.Для этого,на расстоянии примерно 5 мм от лазера,надо расположить линзу плоской стороной к лазеру и сфокусированный пучок направить на черную поверхность.Тогда,можно увидеть,как этот пучок выжигает пластмассу.

Второй лазер,его тоже можно также подключить как и выжигающий лазер,но он светит тускло и видимо в инфракрасном диапазоне волн.

Источник

Особенности фиолетового лазера, опыты, разборка

Продолжим тему прошлой статьи о фиолетовой лазерной указке 405 нм,

Точную излучаемую мощность я не измерял, на глаз показалось, что новая указка светит немного ярче старой, которая была на 100 мВт должна зажигать спичку при фокусировке луча в минимальную точку. 500 мВт тем более. Предполагаю, что реальная мощность указки из обзора 150-200 мВт . Она справилась с зажиганием зелёной спичечной головки с расстояния 35 см (видео ниже). Коричневая головка поджигается немного легче зелёной. Луч таких маломощных лазеров, настроенный на минимальную расходимость, ничего поджечь не сможет. Для фокусировки можно воспользоваться внешней линзой, приложенной к указке, но бо́льшая мощность получается при настройке внутреннего коллиматора. Как менять фокус в таких указках, было описано в первой статье .

Фиолетовое излучение лазера близко к ультрафиолету, поэтому оно, вызывает флюоресценцию и фосфоресценцию (послесвечение) значительного количества веществ.

Из-за флюоресценции, фиолетовая точка на многих поверхностях меняет свой цвет (вторая фотография). В одном магазине мне пытались продать фиолетовую указку вместо синей! Для проверки продавец светил на белую бумагу, пытаясь доказать, что лазер синий 🙂 Также начинают светиться невидимые краски, например, буква V на карте Visa. Другие элементы защиты документов, работающие от 365 нм , светиться не будут .

На многих поверхностях в квартире после облучения этим лазером наблюдается послесвечение (в данном случае не рассматриваем долгую фосфоресценцию специальных веществ ). Чаще всего оно зелёного цвета, проявляется на бумаге, пластике, эмали, сахаре. Также обнаружил, что накипь даёт одну из самых долгих и ярких фосфоресценций, цвет — ближе к жёлтому. Этот и другие опыты можно посмотреть на видео ниже.

Послесвечение некоторых других поверхностей не такое яркое и долгое, как у накипи, поэтому, чтобы заметить его глазом, нужно находиться в темноте, закрыть глаза, осветить поверхность лазером, выключить его и в этот же момент открыть глаза.

Длительность фосфоресценции и яркость флюоресценции может увеличиваться при очень низких температурах , об этом информация в следующем видео . Только там ошибка, лазер назван ультрафиолетовым, хотя на самом деле он фиолетовый. УФ лазерные диоды очень редкие и дорогие, поэтому УФ лазерные указки пока не выпускают. Единственная цена, которую нашёл на УФ ЛД — 671353 рублей!

При 3 В потребляемый лазером ток — 210 мА. При 2,4 В — 360 мА. Драйвер импульсный, повышающий, на микросхеме ZL5P . Падение напряжения на лазерном диоде 6,05 В.

Для измерения тока к контактам лазера подключил «крокодилы». После пары измерений лазер перестал включаться. Такой поворот событий заставил меня разобрать указку и выяснить причину поломки. Оказалось, что отошёл внутренний контакт. Получается, он был так плохо сделан, что небольшое смещение от веса «крокодила» привело к полной неработоспособности указки. Это является основным минусом данного изделия. Позже припаял более пружинящий контакт от переключателя мультиметра и лазер заработал!

Источник

Посмтрел видос про лазер который бумагу прожигает может кто нить обяснить по русски как делать

Хочу возразить Леониду (комментарии) :
> Не-а не получится
У меня не получилось. Но непонятно почему.
> 1. В обычных CD используется инфракрасные лазерные диоды,
Красные Лёня!
> Так что разбирать надо DVD-привод.
Я попробовала разобрать оба. RW, разумеется!! !
>2. Лазерный диод в таких приводах представляет собой единой целое с короткофокусной (доли мм фокус) линзой.
Это не так, она вклеена в электроновое шасси отдельно
> Её не отодрать от диода, не повредив.
А вот диод и вправду не только вклеен, а ещё и запрессован в шасси, так что шасси (головку подвижную) пришлось распилить бормашинкой! При чём там (зачем-то) есть ещё и плоская пластинка типа интерференционного зеркала, в CDRW она была отдельно, а в HP DVDRW — в едином блоке с диодом.
> А без линзы пучок света от полупроводникового лазера сильно
> расходящийся. Кстати, в указках тоже более-менее узкий луч — за счёт линзы.
Именно так. Вот потому-то авторы клипа и предлагают вставить диод от RW-шника в _оптическую систему_ разломанной указки! Правда непонятно, как её-то разбирать. Высверливать, что-ли?
> 3. Мощность лазеров в проигрывателях сильно меньше, чем в указках.
В проигрывателях — да. Но речь то идёт о ПИШУЩИХ приводах, там ДВА лазера (по крайней мере в том, что мы разобрали, HP) один для воспроизведения, другой для записи. Авторы клипа называли цифру мощности пишущего диода — 200 мВт. Это не ахти как много, но прилично, и цифра кажется разумной — ведь этому диоду надо прожигать метки на алюминиевой плёнке на приличной скорости (это когда идёт запись на CDR или DVDR- болванку) .

Читайте также:  Как из бумаги сделать гриб аппликация

Но у нас ничего не получилось — луч-то был, но гораздо слабее, чем от указки. А при попытке поднять питание с 2.5 до 3 вольт диод просто сгорел (стабилизатор тока и тем более световой мощности мы, как и авторы клипа, не использовали) . Может и ничего не получится — ведь этот лазер может развивать приличную мощность только в ИМПУЛЬСЕ, или надо конкретно LG как авторы клипа ломать. А может он уже был битый, ведь мы разломали НЕРАБОЧИЙ привод. Впрочем он и не читал, а для чтения там был другой диод.

Источник

Делаем мощный прожигающий лазер из DVD привода своими руками

Сделать мощный прожигающий лазер своими руками – несложная задача, однако, кроме умения пользоваться паяльником, потребуется внимательность и аккуратность подхода. Сразу стоит отметить, что глубокие познания из области электротехники здесь не нужны, а смастерить устройство можно даже в домашних условиях. Главное при работе – это соблюдение мер предосторожности, так как воздействие лазерного луча губительно для глаз и кожи.

Лазер – опасная игрушка, которая может нанести вред здоровью при его неаккуратном использовании. Запрещается направлять лазер на людей и животных!

Что потребуется?

Любой лазер можно разбить на несколько составляющих:

  • излучатель светового потока;
  • оптика;
  • источник питания;
  • стабилизатор питания по току (драйвер).

Чтобы сделать мощный самодельный лазер, потребуется рассмотреть все эти составляющие по отдельности. Наиболее практичным и простым в сборке является лазер на основе лазерного диода, его и рассмотрим в данной статье.

Откуда взять диод для лазера?

Рабочий орган любого лазера – это лазерный диод. Его можно купить почти в любом магазине радиотехнике, либо достать из нерабочего привода для компакт-дисков. Дело в том, что неработоспособность привода редко связана с выходом из строя лазерного диода. Имея в наличии сломанный привод можно без лишних затрат достать нужный элемент. Но нужно учесть, что его тип и свойства зависят от модификации привода.

Самый слабый лазер, работающий в инфракрасном диапазоне, установлен в CD-ROM дисководах. Его мощности хватает только для считывания CD дисков, а луч почти невидим и не способен прожигать предметы. В CD-RW встроен более мощный лазерный диод, пригодный для прожига и рассчитанный на ту же длину волны. Он считается наиболее опасным, так как излучает луч в невидимой для глаза зоне спектра.

Дисковод DVD-ROM оснащён двумя слабыми лазерными диодами, энергии которых хватает только для чтения CD и DVD дисков. В пишущем приводе DVD-RW установлен красный лазер большой мощности. Его луч виден при любом освещении и может легко воспламенять некоторые предметы.

В BD-ROM стоит фиолетовый или синий лазер, который по параметрам схож с аналогом из DVD-ROMа. Из пишущих BD-RE можно достать наиболее мощный лазерный диод с красивым фиолетовым или синим лучом, способным к прожигу. Однако найти для разборки такой привод достаточно сложно, а рабочее устройство стоит дорого.

Самым подходящим является лазерный диод, взятый из пишущего привода DVD-RW дисков. Наиболее качественные лазерные диоды установлены в LG, Sony и Samsung приводах.

Чем выше скорость записи DVD привода, тем мощнее установлен в нем лазерный диод.

Разбор привода

Имея перед собой привод, первым делом снимают верхнюю крышку, открутив 4 винта. Затем извлекают подвижный механизм, который находится в центре и соединён с печатной платой гибким шлейфом. Следующая цель – лазерный диод, надёжно впрессованный в радиаторе из алюминиевого или дюралевого сплава. Перед его демонтажем рекомендуется обеспечить защиту от статического электричества. Для этого выводы лазерного диода спаивают или обматывают тонкой медной проволокой.

Далее возможны два варианта. Первый подразумевает эксплуатацию готового лазера в виде стационарной установки вместе со штатным радиатором. Второй вариант – это сборка устройства в корпусе переносного фонарика или лазерной указки. В этом случае придётся приложить силу, чтобы раскусить или распилить радиатор, не повредив излучающий элемент.

Драйвер

К питанию лазера необходимо отнестись ответственно. Как и для светодиодов, это должен быть источник стабилизированного тока. В интернете встречается множество схем с питанием от батарейки или аккумулятора через ограничительный резистор. Достаточность такого решения сомнительна, так как напряжение на аккумуляторе или батарейки меняется в зависимости от уровня заряда. Соответственно ток, протекающий через излучающий диод лазера, будет сильно отклоняться от номинального значения. В результате на малых токах устройство будет работать не эффективно, а на больших – приведёт к быстрому снижению интенсивности его излучения.

Оптимальным вариантом считается использование простейшего стабилизатора тока, построенного на базе LM317. Данная микросхема относится к разряду универсальных интегральных стабилизаторов с возможностью самостоятельного задания тока и напряжения на выходе. Работает микросхема в широком диапазоне входных напряжений: от 3 до 40 вольт.

Аналогом LM317 является отечественная микросхема КР142ЕН12.

Для первого лабораторного эксперимента подойдет схема, приведенная ниже. Расчет единственного в схеме резистора производят по формуле: R=I/1,25, где I – номинальный ток лазера (справочное значение).

Иногда на выходе стабилизатора параллельно диоду устанавливают полярный конденсатор на 2200 мкФх16 В и неполярный конденсатор на 0,1 мкФ. Их участие оправдано в случае подачи напряжения на вход от стационарного блока питания, который может пропустить незначительную переменную составляющую и импульсную помеху. Одна из таких схем, рассчитанная на питание от батарейки “Крона” или небольшого аккумулятора, представлена ниже.

На схеме указано примерное значение резистора R1. Для его точного расчета необходимо воспользоваться вышеприведенной формулой.

Собрав электрическую схему, можно сделать предварительное включение и как доказательство работоспособности схемы, наблюдать ярко-красный рассеянный свет излучающего диода. Измерив его реальный ток и температуру корпуса, стоит задуматься о необходимости установки радиатора. Если лазер будет использоваться в стационарной установке на больших токах длительное время, то нужно обязательно предусмотреть пассивное охлаждение. Теперь для достижения цели осталось совсем немного: произвести фокусировку и получить узконаправленный луч большой мощности.

Оптика

Выражаясь по-научному, пришло время соорудить простой коллиматор, устройство для получения пучков параллельных световых лучей. Идеальным вариантом для этой цели будет штатная линза, взятая из привода. С её помощью можно получить довольно тонкий луч лазера диаметром около 1 мм. Количества энергии такого луча достаточно, чтобы насквозь прожигать бумагу, ткань и картон в считаные секунды, плавить пластик и выжигать по дереву. Если сфокусировать более тонкий луч, то данным лазером можно резать фанеру и оргстекло. Но настроить и надежно закрепить линзу от привода достаточно сложно из-за ее малого фокусного расстояния.

Читайте также:  Как сделать из бумаги машинку ауди р8

Намного проще соорудить коллиматор на основе лазерной указки. К тому же в её корпусе можно поместить драйвер и небольшой аккумулятор. На выходе получится луч в диаметре около 1,5 мм меньшего прожигающего действия. В туманную погоду или при обильном снегопаде можно наблюдать неимоверные световые эффекты, направив световой поток в небо.

Через интернет-магазин можно приобрести готовый коллиматор, специально предназначенный для крепления и настройки лазера. Его корпус послужит радиатором. Зная размеры всех составных частей устройства, можно купить дешевый светодиодный фонарик и воспользоваться его корпусом.

В заключение хочется добавить несколько фраз об опасности лазерного излучения. Во-первых, никогда не направляйте луч лазера в глаза людей и животных. Это приводит к серьёзным нарушениям зрения. Во-вторых, во время экспериментов с красным лазером надевайте зелёные очки. Они препятствуют прохождению большей части красной составляющей спектра. Количество света, прошедшее сквозь очки, зависит от длины волны излучения. Смотреть со стороны на луч лазера без защитных средств допускается лишь кратковременно. В противном случае может появиться боль в глазах.

Источник

Умелец из США собрал 100-ваттный лазер, прожигающий металл и стекло, в корпусе полицейского портативного радара

Энтони Дрейк, который известен благодаря своим DIY-проектам, в основном, связанным с лазерами, собрал и продемонстрировал на видео портативный лазер с мощностью в 100 Вт.

По словам Дрейка, его лазер — самый мощный в мире DIY-лазер, собранный в виде портативного устройства. Его достижение стало возможным благодаря дому, что за последние лет 20 мощность лазерных установок значительно выросла.

Соответственно, многие DIY-проекты собраны на базе лазеров четвертого класса опасности. Работа с ними в ненадлежащих условиях может привести к очень серьезным травмам и даже смерти, но это никого не останавливает. Это относится и к самому Дрейку, который, впрочем, прекрасно понимает потенциальную опасность своих устройств.

Что касается лазера, то Дрейк собрал его из 20 диодов, совокупная мощность которых составляет 95 Вт. В продаже таких мощных диодов нет, к Дрейку они попали неофициально. В корпусе радара есть регулятор напряжения, датчик температуры, вольтметр и литий-ионные аккумуляторы, которые обеспечивают семь минут непрерывной работы для лазера. Для того, чтобы отводить от установки тепло, используется алюминиевый теплоотвод.

Для того, чтобы достичь и немного превысить мощность в 100 Вт, Дрейк поднял силу тока с 3 до 3,2 ампер. Теперь мощность лазера примерно в 2000 раз превышает мощность стандартной лазерной указки.

Лазер мгновенно поджигает бумагу и дерево, кроме того, он прожигает дыры в тонком металле и плавит стекло. Вероятно, такой девайс можно использовать и в качестве портативного лазерного оружия. Будущее уже практически здесь.

Источник

Как сделать режущий лазер своими руками?

Не секрет, что каждому из нас в детстве хотелось иметь такое устройство, как лазерная установка, которая могла бы разрезать металлические уплотнения и прожигать стены. В современном мире эта мечта легко воплощается в реальность, поскольку теперь можно соорудить лазер с возможностью резки различных материалов.

Электрическая схема блока питания лазерного диода.

Разумеется, в домашних условиях невозможно изготовить настолько мощную лазерную установку, которая будет прорезать железо или дерево. Но при помощи самодельного устройства можно резать бумагу, полиэтиленовое уплотнение или тонкий пластик.

Лазерным устройством можно выжигать различные узоры на листах фанеры или на дереве. Оно может использоваться в качестве подсветки объектов, расположенных в удаленной местности. Область его применения может быть как развлекательной, так и полезной в строительных и монтажных работах, не говоря о реализации творческого потенциала в сфере гравировки по дереву или оргстеклу.

Как правильно сделать пол из фанеры.

Режущий лазер

Инструменты и принадлежности, которые потребуются для того, чтобы изготовить лазер своими руками:

Рисунок 1. Схема лазерного светодиода.

  • неисправный DVD-RW привод с рабочим лазерным диодом;
  • лазерная указка или портативный коллиматор;
  • паяльник и мелкие провода;
  • резистор на 1 Ом (2 шт.);
  • конденсаторы на 0,1 мкФ и 100 мкФ;
  • аккумуляторы типа ААА (3 шт.);
  • маленькие инструменты типа отвертки, ножика и напильника.

Этих материалов будет вполне достаточно для предстоящих работ.

Итак, для лазерного устройства в первую очередь необходимо подобрать DVD-RW привод с поломкой механического характера, поскольку оптические диоды должны быть в исправности. Если у вас отсутствует износившийся привод, придется приобрести его у людей, которые продают его на запчасти.

При покупке следует учитывать, что большинство приводов от производителя Samsung являются непригодными для изготовления режущего лазера. Дело в том, что эта компания выпускает DVD-приводы с диодами, которые не защищены от наружного воздействия. Отсутствие специального корпуса означает, что лазерный диод подвержен тепловым нагрузкам и загрязнению. Его можно повредить легким прикосновением руки.

Рисунок 2. Лазер из DVD-RW привода.

Оптимальным вариантом для лазера будет привод от производителя LG. Каждая модель оснащается кристаллом с различной степенью мощности. Этот показатель определяется скоростью записывания двухслойных DVD-дисков. Крайне важно, чтобы привод был именно записывающим, поскольку в нем содержится инфракрасный излучатель, который нужен для изготовления лазера. Обычный не подойдет, так как он предназначен только для считывания информации.

DVD-RW со скоростью записи 16Х оснащен красным кристаллом мощностью 180-200 мВт. Привод со скоростью 20Х содержит диод мощностью 250-270 мВт. Высокоскоростные записывающие устройства типа 22Х оборудуются лазерной оптикой, мощность которой достигает 300 мВт.

Разборка DVD-RW привода

Этот процесс должен проделываться с тщательной осторожностью, поскольку внутренние детали имеют хрупкую структуру, их легко повредить. Демонтировав корпус, вы сразу заметите необходимую деталь, она выглядит в виде небольшого стеклышка, расположенного внутри передвижной каретки. Его основание и нужно извлечь, оно отображено на рис.1. Этот элемент содержит оптическую линзу и два диода.

Читайте также:  Как сделать из белогы бумаги игрушку

На этом этапе сразу следует предупредить, что лазерный луч является крайне опасным для человеческого зрения.

При прямом попадании в хрусталик он повреждает нервные окончания и человек может остаться слепым.

Лазерный луч обладает ослепляющим свойством даже на расстоянии 100 м, поэтому важно следить за тем, куда вы его направляете. Помните, что вы несете ответственность за здоровье окружающих, пока такое устройство находится в ваших руках!

Рисунок 3. Микросхема LM-317.

Перед тем как приступить к работе, необходимо знать, что лазерный диод можно повредить не только неосторожным обращением, но и перепадами напряжения. Это может случиться за считанные секунды, поэтому диоды работают на основе постоянного источника электричества. При повышении напряжения светодиод в устройстве превышает свою норму яркости, вследствие чего разрушается резонатор. Таким образом, диод теряет свою способность к нагреву, он становится обычным фонариком.

На кристалл воздействует и температура вокруг него, при ее падении производительность лазера возрастает при неизменном напряжении. Если она превысит стандартную норму, резонатор разрушается по схожему принципу. Реже диод повреждается под воздействием резких перепадов, которые обуславливаются частыми включениями и выключениями устройства в течение короткого периода.

После извлечения кристалла необходимо моментально перевязать его окончания оголенными проводами. Это нужно для создания соединения между его выходами напряжения. К этим выходам нужно припаять малый конденсатор на 0,1 мкФ с отрицательной полярностью и на 100 мкФ с положительной. После этой процедуры можно снять намотанные провода. Это поможет защитить лазерный диод от переходных процессов и статического электричества.

Питание

Зависимость величины поглощенной энергии лазерного излучения от радиуса луча и типа соединения.

Перед созданием элемента питания для диода необходимо учесть, что он должен подпитываться от 3V и расходует до 200-400 мА в зависимости от скорости записывающего устройства. Следует избегать подсоединения кристалла к аккумуляторам напрямую, поскольку это не простая лампа. Он может испортиться даже под воздействием обычных батареек. Лазерный диод является автономным элементом, который подпитывается электричеством через регулирующий резистор.

Система питания может быть налажена тремя способами с различной степенью сложности. Каждый из них предполагает подпитку от постоянного источника напряжения (аккумуляторы).

Первый метод предполагает регуляцию электричеством при помощи резистора. Внутреннее сопротивление устройства измеряется путем определения напряжения во время прохода через диод. Для приводов со скоростью записи 16Х вполне достаточно будет 200 мА. При повышении этого показателя существует вероятность испортить кристалл, поэтому стоит придерживаться максимального значения в 300 мА. В качестве источника питания рекомендуется воспользоваться телефонным аккумулятором или пальчиковыми батарейками типа ААА.

Преимуществами этой схемы питания являются простота и надежность. Среди недостатков можно отметить дискомфорт при регулярной подзарядке аккумулятора от телефона и сложность размещения батареек в устройстве. Кроме того, трудно определить нужный момент для подзарядки источника питания.

Рисунок 4. Микросхема LM-2621.

Если вы используете три пальчиковых батарейки, эту схему можно легко обустроить в лазерной указке китайского производства. Готовая конструкция отображена на рис.2, два резистора на 1 Ом в последовательности и два конденсатора.

Для второго метода применяется микросхема LM-317. Этот способ обустройства системы питания намного сложнее предыдущего, он больше подойдет для стационарного типа лазерных установок. Схема основывается на изготовлении специального драйвера, который представляет собой небольшую плату. Она предназначена для ограничения электротока и создания необходимой мощности.

Цепь подключения микросхемы LM-317 отображена на рис.3. Для нее потребуются такие элементы, как переменный резистор на 100 Ом, 2 резистора на 10 Ом, диод серии 1Н4001 и конденсатор на 100 мкФ.

Драйвер на основе данной схемы поддерживает электрическую мощность (7V) вне зависимости от источника питания и окружающей температуры. Несмотря на сложность устройства эта схема считается простейшей для сборки в домашних условиях.

Третий метод является наиболее портативным, что делает его самым предпочтительным из всех. Он обеспечивает питание от двух батареек ААА, поддерживая постоянный уровень напряжения, подаваемого на лазерный диод. Система удерживает мощность даже при низком уровне заряда в аккумуляторах.

При полной разрядке батарейки схема перестанет функционировать, а через диод будет проходить небольшое напряжение, которое будет характеризоваться слабым свечением лазерного луча. Этот тип подачи питания является самым экономичным, его коэффициент полезности действия равняется 90%.

Схема двухстандартной оптической головки.

Для реализации такой системы питания понадобится микросхема LM-2621, которая размещена в корпусе размером 3×3 мм. Поэтому вы можете столкнуться с определенными трудностями в период припаивания деталей. Конечная величина платы зависит от ваших умений и сноровки, поскольку детали можно расположить даже на плате 2×2 см. Готовая плата отображена на рис.4.

Дроссель можно взять от обычного блока питания для стационарного компьютера. На него наматывается проволока с сечением 0,5 мм с количеством оборотов до 15 витков, как это показано на рисунке. Дроссельный диаметр изнутри составит 2,5 мм.

Для платы подойдет любой диод Шоттки со значением 3 А. К примеру, 1N5821, SB360, SR360 и MBRS340T3. Мощность, поступающая к диоду, настраивается резистором. В процессе настройки рекомендуется соединить его с переменным резистором на 100 Ом. При проверке работоспособности лучше всего использовать изношенный или ненужный лазерный диод. Показатель мощности тока остается таким же, как и на предыдущей схеме.

Подобрав наиболее подходящий метод, можно модернизировать его, если у вас есть необходимые для этого навыки. Лазерный диод нужно размещать на миниатюрном радиаторе, чтобы он не перегревался при повышении напряжения. По завершении сборки системы питания нужно позаботиться об установке оптического стекла.

Размещение оптики

Для создания коллиматора рекомендуется извлечь оптическую линзу из китайской лазерной указки. При этом луч будет иметь диаметр не менее 5 мм, что является слишком высоким показателем. Стоковая линза коллиматора сокращает диаметр луча до 1 мм, но для настройки такого лазера придется потрудиться. Это обусловлено небольшим фокусным расстоянием, что затрудняет регуляцию ширины луча.

Если вам все же удастся настроить стоковую оптику, лазер сможет легко разрезать полиэтиленовые пакеты и моментально лопать воздушные шары. При наведении на древесную поверхность луч прожжет ее, словно паяльник. Главное – не забывать о технике безопасности при использовании.

Источник